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Over the last ten years, robustness of schemes has raised an increasing interest
among the CFD community. One mathematical aspect of scheme robustness is the
positivity preserving property. At high Mach numbers, solving the conservative Euler
equations can lead to negative densities or internal energy. Some schemes such as
the flux vector splitting (FVS) schemes are known to avoid this drawback. In this
study, a general method is detailed to analyze the positivity of FVS schemes. As an
application, three classical FVS schemes (Van Leeranefis variant, and Steger
and Warming's) are proved to be positively conservative under a CFL-like condition.
Finally, it is proved that for any FVS scheme, there is an intrinsic incompatibil-
ity between the desirable property of positivity and the exact resolution of contact
discontinuities. © 1999 Academic Press

Key Words:stability and convergence of numerical methods; other numerical
methods.

INTRODUCTION

In high speed flows computations, robust schemes are necessary to deal with int
shocks or rarefactions. As a result, numerical schemes are likely to produce negative de
or internal energy after a finite time step. In highly accelerated flows, the total energy
mainly composed of kinetic energy. Yet, in conservative formulation, both total and kine
energy are computed independently, and their difference yields the internal energy wi
may become negative. Computations then update the flow to non-physical states, and |
the time integration fail.

In order to give some mathematical interpretation of schemes robustness or weak
in such severe configurations, it is useful to introduce the positivity property: a schem
said to be positively conservative if, starting from a set of physically admissible states
can only compute new states with positive densities and internal energies. Perthame
first proposed a scheme which satisfies this property. Afterwards, Eirfieddt[3] gave
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some results concerning Godunov-type schemes. They proved that the Godunov sct
[5] is positively conservative while Roe’s scheme [16] is not, and they derived the HLL
method, a positive variant of the HLL schemes family of Haeeal. [7]. Later, Villedieu
and Mazet [20] proved that Pullin’'s EFM kinetic scheme [15] (later renamed as KFVS
Deshpande [1]) is positively conservative under a CFL-like condition. Recently, Dubro
[2] proposed a positive variant of Roe’s method. This study has to be distinguished fr
the Larrouturou [8] approach which has been used by Liou [11], where only the den:s
positivity is addressed.

Since any scheme is positively conservative for a zero time step, it is absolutely esse
to specify a time step condition when defining the positivity property.

Recently, Linde and Roe [9] extended the pioneering work of Pertlerak[13, 14]
and proved the remarkable theorem which states that given a first-order one-dimensi
positively conservative scheme one can always build a second-order multidimensional |
itively conservative scheme for the Euler equations with the van Leer MUSCL approach
a similar way, Estivalezes and Villedieu [4] have proposed a general framework to transft
a positive FVS scheme into a positive multidimensional second-order accurate scheme
a variant of the so-called anti-diffusive flux approach. This is the reason why only fir
order one-dimensional methods will be considered in the following. Although, in Linc
and Roe’s paper, the initial positivity definition includes a CFL-like condition, the fine
positivity condition which is derived to build the numerical flux of a positive scheme is n
actually associated with a maximum allowable time step.

In this work, particular emphasis has been put on the CFL form of the time step condit
which guarantees the positivity preserving property. In the following, all other time st
conditions for which an arbitrary small time step might be required to update some partict
admissible initial conditions will not be considered.

In Section 1, a method adapted for FVS schemes is detailed to provide a necessary
sufficient condition for positivity. Although some schemes, such as the flux vector splitti
(FVS) schemes, are known to be robust in various practical situations, to the best of
authors’ knowledge, their positivity property has not yet been proved in general. Using
framework derived in Section 1, the positivity of the Van Leer scheme [18] and the one
Steger and Warming [17] is proved in Section 2, and the maximal CFL-like condition
given.

Finally, in Section 3, it is proved that any FVS scheme, which has been designed to |
serve stationary contact discontinuities, cannot satisfy the necessary conditions of posit
detailed in Section 1.

1. FVS SCHEMES AND POSITIVITY

The one-dimensional Euler equations can be written in conservation law form as

au N AFU)
at ax

0, (1a)

where

U=\ pu and  FU)=| pu’+p (1b)
pE puH
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with the total energ\e = e+ %uz, the total (or stagnation) enthalpy such thatoH =
oE + p and the pressurp, given by the pressure lag= p(p, €). For sake of simplicity,
this study has been restricted to the case of perfect gases for which the pressure law is
by

p=(y—1pe (1c)

wherey is the ratio of specific heats: a constant such thatjz < 3.

Since one can formally extend any first-order one-dimensional positively conservat
method to a second-order multidimensional positively conservative method (see [13, 14,
we will restrict ourselves to the case of first-order schemes for the one-dimensional E
equations in the following analysis. After a discretization of the integral form of Eq. (1¢
conservative explicit methods can be expressed under the form

At
U =U — B[FHM — Fi_12], ()

where

e U is the average value over cé€l| of the vector of conservative variabl&®, pu,
pE) at a given time stefdl; is the average value in the same sense at the following tin
step.

e AX is the measure of cefp;.

o Fii1/, is the numerical flux between the cefts and<2; ;1. The numerical flux is a
function Fi 11,2 = F (U4, Ui+1) of the states of both neighboring cells. The numerical flu;
must satisfy the consistency condition

pu
FUU=FU =| pu?>+p (3)
u(pE+ p)

with the closure relatiop = (y — 1)(pE — %puz) which is derived from Eq. (1c¢).

DEerINITION 1. For a given stat®, the characteristic wave speg@/) is defined by

A(u>=|u|+,/y7f. (a)

For a given cel;, a local CFL numbey/°¢ is defined by
At
XiloC = )\(ui)ﬂ~ )

Remarks.

e The characteristic wave spegd/) is the maximum wave speed in the flow and
is naturally involved in stability conditions. This speed naturally appears in the lineariz
Euler equations since it is the spectral radius of the Jacobian nagigis .
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e This definition is consistent with the well-known CFL condition which aims a
ensuring linear stability of the explicit scheme given by Eq. (2). This condition can |
written as

AX

t<y—m ™M . 6a
= X maxza ) (62)

It means that the time step must be small enough so that the fastest waves cannot t
across more than one cell during the integration process. Since the fastest wave veloc
approximated by (), the CFL numbey generally satisfies @ x < 1. Using Definition 1,
condition (6a) may be rewritten as

maxy* < x. (6b)
ieZ

The discretized conservation equation Eq. (2) can then be rewritten.yth. (4 ),

loc

Ui =U — );i—_[Fi+1/2 — Fi_y2]. ()
|

1.1. Physical States and Positive Solutions
For physical reasons, the stateannot take any arbitrary valuelR?. It must satisfy the
constraints

p>0 and e>0. (8)

One can defing;,, as the space of physically admissible states. A state is physica
admissible if its density and its internal energyE — 1/2pu? are positive. Therefore, the
following definition can be given for the open $@4 and its closure;,.

DEFINITION 2. The space of physically admissible states, also called positive states
defined as

Qu = {U = T(u1, U, Ug) | Uy > O and 21,u3 — u3 > 0} (9a)
Qu = {U = "(u, Uz, u3) | Uy > 0, ug > 0 and 21Uz — u3 > 0}. (9b)
Remarks.

e It can be easily shown (see Lemma 2 in the Appendix) fhatndQ;, areconvex
cones This means that foR2 denoting eitheg;, or €, the following property holds

YU, Us € 2,V aq, a2 > 0, oy + alhy € Q. (10)

e Although vacuum is an admissible state, it has not been add@g &ince it is not
expected to be reached in practical computations. Nevertheless, it beldﬁgs to

e According to Definition 22, is an open seK_Zu is the closure of2;,.

e The true internal energy is calculated usjmg=uz — (1/2)(u§/u1). Yet, because
of its simplicity, the expression in the definition will be used to prove its positivity.
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DerINITION 3. A scheme is said to hositively conservativié and only if there exists
a constanj, such that ensuring both the conditions

eViecZ, U eQy (11a)
o At < Xm (11b)
implies
Vi € Z, U € Qu. (12)
Remarks.

e The definition means that a scheme is said to be positively conservative if it lea
the set of admissible state invariant under a CFL-like condition.

o Ifascheme is positively conservative for a given CFL numbehen it remains pos-
itively conservative for any CFL numbef < x. Indeed, itis a straightforward consequence
of the property of convexity of2;,,

x—x'

! !
u—X—AF=X—(u—1AF)+ u. (13)
A X A
e For At =0, according to Eq. (2), one hese Z, U; =U; € ©y whatever the scheme
and its flux function are. So, for any continuous flux functiorsince;, is an open subset
of R3, whatever initial condition#/ are in§2,, one can findAt small enough which will
preserve positivity of statds;.

Consequently, the property of positivity does not rely on proving that it existsuch
that (Vi € Z, Ui € @y = U € Qy), but it consists of proving that this time step is not too
small compared to @t given by the stability condition (6a). Otherwise, one can find
situation in which a physical admissible state can only be obtained by a vanishing time s
which is not acceptable for practical gas dynamics applications.

e On the contrary, a scheme is said tortmm-positivef

Vx > 0,3U)iez € Qu, Ui ¢ Qu. (14)

For a non-positive scheme, one may have to use an extremely small time step to up
the solution and may not be able to produce a physically admissible solution after a fi
period of time.

1.2. Positivity of FVS Schemes

Flux vector splitting (FVS) schemes are built by adding the contributions of both ce
located on either sides of a given interface. The numerical flux of any FVS method car
expressed as

Fiiie=FYU) + F~ Us). (15)
The consistency condition Eq. (3) becomes
FraH+F~U) =FU), (16)

whereF is the exact Euler flux.
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The aim of this section is to derive a necessary and sufficient condition to ensure
positivity of a given FVS scheme. This study has been restricted to a class of FVS sche
in which the fluxes=* satisfy the symmetry property

F-U) = —F* ), (17)

where X is the symmetric vectof(xy, —X, X3) of X = T(x1, Xz, X3). This property is a
straightforward consequence of the flux isotropy: flux formulation is invariant by rotatic
of the coordinates system. Therefore, this requirement is not actually a real restriction s
in practice all available FVS schemes satisfy the symmetry property.

For all FVS methods which satisfy the symmetry property,fiefunction is sufficient
to define a FVS scheme since the function can be computed from Eg. (16), and then
the numerical flux can be obtained from Eq. (15). Furthermore, the following notation
defined

F*U) =F*U) — F~U). (18)

An additional assumption on numerical fluxes is necessary to proceed to the proo
Theorem 1. Sincg/ can be expressed as a functiorpefl, anda, F* is also a function of
these three variables. Keeping the same notations when wHtinigp other variables, the
assumption is expressed as

Yu,aeR x RT, |im0 F£(p,u,a) =0. (19)
p—>

In fact, F¥ (/) is generally an homogeneous functiongfand the previous assumption
Eqg. (19) is not restrictive. Obviously{ shares the same property.

THEOREM1. A given FVS scheme satisfying propertie®), (17), and(19) is positively
conservative if and only if its ¥ functions satisfy both the properties
o VU €y, FYU) ey (20a)

e dy >0 VUeQ, U- ﬁmm e Q. (20b)

In that case the less restrictive positivity condition is expressed as
VieZ, o x° < xopt (21)

wherexqp is the greatest constant satisfying (20).
Remarks.

o If (FT) satisfies condition (20a), thén-F~) and(F*) belong tog;,.

e Asit has been pointed out in Definition 3 of a positive scheme, such a FVS schem
positively conservative while using any CFL numbesx xop: by convexity considerations.

e The above double condition is not only a sufficient condition of positivity but als
a necessary condition which can be very helpful to show that a given FVS method is
positively conservative.
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Proof. The conservation Eq. (7) can be expressed as the sum of the contribution:
three cells: in the case of FVS schemes, Eq. (7) is rewritten as

Ui = — ” F*WJ+F(MH%—pﬂ4D F )] (22a)
_Ioc R
=U — %[F*(Ui) — FtUiz1) — FTUi-1)] (22Db)
loc
= Wolh) X X' AL (22¢)
where
loc

Wold) = U — XTF*(L{) (23a)

WLU) = FU) (23b)

Wel) = —F~U) = F+ Q). (23¢)

e Conditions (2@) and (2() are sufficient. On one hand, using condition (20a) and
that the symmetry operator kee@s, invariant, one has* € Q, = FT € @, and then
WL andWhk are physically admissible states.

On the other hand)/, may be rewritten

loc

X

Wolh) = U — F () (242)

loc Ioc
=17LM @——FMQ (24b)

AssumingthaYi € Z, x{°° < x asausual CFL condition, one hids— x'°°/ )4 € 2 and
condition (20b) implies that the second term of Eq. (24b) belong@stddence (Lemma 3),
Wo € Q. Using Lemmas 2 and 3 (see Appendix),

WL, Wr € f_Zz,{, Wo e Qu = Ui € Qy (25)

Vi € Z, U; is a physically admissible state and the scheme is positively conservative.

e Condition (2@) is necessatry. If this condition is not satisfied, then
AU €, FHl) ¢ (26)
One can rewrite the updated stétewith the following set of initial conditions

Z/{c Z/lc Z/lp up Z/{p

i—-2 i—-1 i i4+1 i+2
X_Ioc X_Ioc
Ui = Z/{p - ! F+(up) + I F+(UC) ) (27)
max Amax
Wy We

whereimax = max(ic, Ap).
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LetA, =R3— ﬁu. SinceF T (U,) ¢ ﬁu andA, is an open set, there exists a ball arounc
W, whose radius is not zero and includedAg. SinceW; only depends omi, anday,
throughimax but not onp,, one can make, decrease while keeping. constant. Then,
using assumption (19), one can find small enough depgiguch that the updated stéfe
is yet in the ball, hence not if2;,.

Hence, for all CFL numbersg satisfying condition (20a), one can always find some initia
conditions such that the non-positivity Bff could not be balanced afid ¢ .

e Condition (2®) is necessary. If this condition is not satisfied, then

loc

X
A

Then, one can write the updated state under the oy V. + W, with W, € @, and
W, ¢ Q. In the same way as in the first part of the present proof, for any CFL numb
X, one can always fingl; satisfying Eq. (28) and then adjust densities of the neighborin
cells small enough such that the non-positivityWw§ =, — x'°¢/»F* () could not be
balanced.

The proof is completed.

Vx >0,3U. € Qi Ue— F*(Ue) ¢ Q. (28)

Therefore, owing to the particular property of FVS schemes that yields separate cor
butions of the local cell4; and its neighborgf_; andi{ .1, the positivity of a given FVS
scheme is ruled by two necessary and sufficient conditions.

2. POSITIVITY OF SOME CLASSICAL FVS SCHEMES

Some FVS schemes are already known to be positively conservative (EFM [20] &
Perthame’s kinetic scheme [12]). Some other classical FVS schemes such as the ol
van Leer [18] or Steger and Warming [17] are known to be very robust and do not prodi
negative states. However, to the best of the authors’ knowledge, their intrinsic positi
property has not yet been proved.

In this section, both conditions (20a) and (20b) will be used to prove that those scher
are positively conservative. Moreover, a maximum CFL numd@d ), which only depends
on the local Mach number, will be expressed as a necessary and sufficient conditior
positivity. Using the smallest value gftM) for all Mach numbers will provide a sufficient
CFL condition for positivity which may be used in practical computations. Here are sor
practical details to describe the method which will be applied in the following

e First,(F* € Q) is a necessary condition to prove the positivity of a scheme. If thi
condition is not satisfied, one can always find some si@tgsfor which W, will not be
able to balance the non-positivity 6" as demonstrated in Subsection 1.2. Positivity o
F+=T(fy, fo, f3) is proved in the same way as it is for a state through the evaluatibn of
and 2f1 f3 — f22

e Then, a condition on the time step so that At/AXF*(U) € @y has to be ex-
tracted. If it can be expressed as a CFL condition, the scheme is showrnptasibtieely
conservativelf not, according to Theorem 1, the schemea-positive

Condition (20b) can be written &%V, € ;). It needs strict positivity of two terms: mass
positivity conditions are generally straightforward to derive. However, internal energy pc
itivity generally requires further algebra. In the case of FVS methods, this second condit
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can be easily put under the quadratic form
a(M)Z (¢, M)? + 20(M)¢ (x'°°, M) + (M) <0, (29)

wherea(M), b(M), c(M) are scalar functions of the local Mach numb&and (x'°¢, M)

is a scalar function of bottM and the dimensionless time stgff°. For the schemes
considered in the present paper, the three following properties are satafidg> 0,
c(M) <0, andz(x'°¢, M) > 0 if the mass positivity condition is satisfied. Therefore, the
function ¢ (x'°°, M) has to lie between the roots of the quadratic expression (29a). Sir
one root is negative, the positivity of internal energy is ensured whenever

—b(M) 4 /B(M)2 — a(M)c(M)

Ioc7 M max =
404 )< ¢ a)

(29b)

Itwill be shown that (x'°¢, M) is anincreasing monotone functiondf°. Hence, condition
(29b) willautomatically lead to a condition on the local CFL numj'&f, which is expressed
as

X% < X% (M), (29c)

The scheme positivity will be proved in two steps. Fiist, (/) has to be an admissible
state. Since this first condition does not involve the local CFL number, it should not leac
stringent conditions. Second, requiring positivity)df will lead to a time step condition
which depends on the local Mach number. The final CFL-like condition which will be us
to satisfy the positivity property Definition 3 will then be derived by computing the smalle
value of the local CFL-like condition for all values of the Mach number.

To derive these conditions, let us define two dimensionless coefficients as function
the local Mach number

E 1 1
Ke=—=———4-M? 30a
ET@ 30— 2 (302)
H 1 1
Ky=—=——+=-M2 30b
H= 2 y—1+2 (30b)

2.1. The Fully Upwind Case

In supersonic areas, the numerical flux is fully upwind for almost every FVS scheme
means that the numerical flux(4, , UR) is equal either to the real flug (4, ) or F(UR)
according to the sign of the Mach number. The following analysis remains valid not or
for FVS schemes but for all upwind schemes which produce full upwinding in superso
areas. Nervetheless, although this property seems to be natural for FVS schemes, it
not have to be shared by flux difference splitting (FDS) schemes [10].

For FVS schemes, full upwinding requires that (/) is either null or equal toF (A)
if the absolute local Mach number is greater than one. Furthermore, using the symm
property, the upwind case with the Mach number greater than one will only be conside
here without loss of generality.
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LEMMA 1.

_ —1
FU) ey ifandonlyif M> ”7 (31a)

M| +1
IM|+(y =D/2y"

U-— %F(Z/l) e, ifandonlyify < ymax= (31b)

Remarks.

e The caseF™ = F () is included in this lemma. The other case (for whigh =
(0, 0, 0)) always satisfies the conditions of Theorem 1 since the vacuunistatg0, 0, 0)
belongs tay,.

e Since most schemes (and particularly VL and SW schemes) are fully upwind 1
M > 1, condition (31a) is not restrictive.

e The condition of Eq. (31b) is necessary and sufficient. Nevertheless, a suffici
condition can be obtained by using the minimum of the local CFL numbers, which is

Xopt = l\llpzfl Xmax = L. (32)

Consequentlyall schemes are positively conservative in regions where the numerical fl
is fully upwind under the usual CFL conditiogn< 1. Obviously, this result is not limited to
the class of FVS schemes and equally applies to any numerical flux which is fully upwi
in supersonic regions.

Proof. (1) Positivity of vectofF (/). Following the method detailed in Subsection 1.2,
F* () which derives intaF (1{) in supersonic areas has to be equivalent to an admissik
state. This vector can be written as

M
F) =pal| a[M*+ 1] | (33)
azM Khx

whereKy is defined by Eq. (30b). Mass positivity is straightforward sikte 1. Positivity
of the quantity2 f; f3 — f2) leads to

2M?2 1
2,4
pa’| ——— —| >0. 34
L/(y -1 yz] (34)
The flux F () is then an admissible state if
y—1

M > Mpin = 7 (35)

This condition is always satisfied sinbin, < 1 and full upwinding only appears in super-
sonic areas.
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(2) Positivity of vectorWy. Following the method described in the beginning of
Section 2, developing mass and energy termd’pstate will lead to a condition on the time
step which will make the scheme positively conservative. The t8iyitan be developed
as

1

M) alM-1c] |, (36)
aZ[KE—%g]

loc

M+1

loc

X

— U —
Wo S

f(U):,o(l—

where¢ = x'°¢/(1+ M — x'°°M) andK has been defined by Eq. (30a).

Mass positivity requires  (x'°°/(M +1))M > 0.¢ is then a positive function of'°°
and the Mach numbevl. By developing(2uiuz — u3), positivity of internal energy leads
to the following conditionz? < % Positivity conditions can be summarized as

mass x'°° < (37a)

M| +1
IM|+(y —=D/2y"

Any fully upwind FVS scheme is then positively conservative in supersonic areas un
condition (37b), which is the most stringent. Finally, one can check phat=
iNfimi=1 xmax(M) = 1.

The proof is completed.

internal energy  x'°° < xmax= (37b)

Since the upwind case has been addressed, the previous analysis can be applied
FVS schemes where flux expressions only differ in subsonic areas.

2.2. Van Leer’s Scheme

The Van Leer scheme (VL) proposed in 1982 [18], and one of its variants (VLH), propos
by Hanelet al.[6] satisfy properties (16), (17), and (19). They yield a fully upwind numerice
flux in supersonic areas. In subsonic areas, their numerical flux can be expressed und
common expression

1
+ + Kp
F* = pakj | a[M+ 5] | (38)
a’K§
whereKj;, K&, andK§ are defined by

M + 1)

KE = i% (39a)

Ki=+Q2F M) (39Db)
(1AM (L

Kt =1{7 =l . 2 Mz) VL) (39¢)
Ku= 1 +%  (VLH).
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These variants only differ from each other in the expression of their energy flux ter
After convergence in time, VLH guarantees constancy of the total enthalpy field in the flc

THEOREMZ2. The Van Leer scheme is positively conservative- 1. The optimal CFL
number is

Xopt = MiN VL (M), 1}, (40)

Mle?gzl] Xmax
wherey YL (M) is defined by Eq47).
For Van Leers schemgyop: = 1. For Hanel's variant xopt = min(d, %).

Remarks.

e This condition is necessary and sufficientL, is a complicated function of the local
Mach number whose expression strongly depends on the version considered for Van L
method (VL or VLH, see Eq. (47)).

o x L isdefined by Eq. (47) inthe subsonic range. In the supersonic range, the sch
is fully upwind and condition (31b) applies.

e Condition (40) is necessary and sufficient. Nevertheless, a sufficient condition ¢
be obtained by using the minimum of the local CFL numbers (including the condition
the supersonic range), which g, = 1 for usual gases where<ly < 2. This means that
Van Leer’s original and modified methods are positively conservative under the usual C
conditiony < 1.

Proof. (1) Positivity of vector E. To satisfy condition (20a), it is necessary to calculate
the mass and the internal energy terms of the equivalent st&&.dDne has to prove that
F* belongs to, which is the closure of the admissible states space. For both schen
(VL and VLH), the mass term is positive since they have the same expressigh, which
is unconditionally positive. On the contrary, the internal energy terms must be develoj
according to the expressions fiif; associated with each variant. The tegpa Kﬁ)2 can
be simplified because it does not affect the sign of the expression. The positivity of b
schemes is ruled by the condition

K2
2K;—<M+P> > 0. (41)
14
e Forthe VL scheme, Eq. (41) leads to the condition
4 17 ) 50 (42a)
yi(y?-1 2 -

which is positivev M sincey > 1.

e Forthe VLH scheme, Eq. (41) leads to a parabolic functiomof
2y?

1
2[(2y—1)M2—4(y—1)M+ 1~ ]20 (42b)

14
which is always positive since its minimum equajs’2(y — 1)(2y — 1), which is positive
fory > 1.

Both schemes then provide a numerical flax which corresponds to a physical state,
without any condition. Hence, both VL and VLH schemes satisfy the first requirement
positivity. There remains to exhibit a CFL-like condition by analyzing the other 1&g
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(2) Positivity of vectonVy. Positivity analysis of vectolV, will lead to a necessary
and sufficient condition on the time step to make the scheme positively conservative. U:
Eq. (38),W, vector may be written as

loc

Wo =U — XTF*(L{), (433)
where
K
F*U) = F*U) - F~U) = pa| a[MK} + Kp] (43b)
aZKy,
with
* + — M2+ 1
Ky =Ki —Ky= > (44a)
1
K;:KQK;—K,\_AKF‘,zéM(B—Mz) (44b)
K = KiK§ — KuKg. (44c)
VectorW, is then rewritten as
1
loc e *
_ (1 XKm _ ke
Wo—,o<1 1+|v|> am - “¢] : (45)

a?[Kg — ¢(Kfy — Ky Ke)l

where¢ = x'°°/(1 + M — x'°°K}) andKg has been defined by Eq. (304)is positive
since mass positivity requires-1y'°°Kr, /(1 + M) > 0. Following the method described
in Section 2, internal energy positivity leads to a condition under the form of Eq. (29a) w
the coefficients

* 2
aM) = (f/") (46a)
* * KE
b(M) = K}, — K;;Ke — M v (46b)
M)y = —— 2 (a6c)
T oy -1

Only b(M) differs between the two variants VL and VLH, because of the definitidﬁ,_*gf
Calculations give

MBS (VL)
h(M) = {2V(V+1) (46d)

2_ 12
W (VLH).
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tmax(M) can be calculated using Eqg. (29b). The maximum local CFL nurpligris then
straightforward to obtain by inverting thg x'°¢, M) function. The internal energy is then
positive under the condition

loc VL _ (L4 M)dmax( M)
1S e T (M2 4 1) /2) M)

(47)

since¢max(M) is an intricate function of the local Mach numbigr. Expressions are not
detailed but this limit is plotted as a function bf in Subsection 2.4.

(3) Computation ofpr.  To use the same constgntwhatever the flow is, it is needed
to compute the smallest value (for VL or VLH schemes)

XOp'[ — [I i ]Xmax(M) (48a)

Since both schemes are fully upwind in supersonic regions, Lemma 1 applies and

Me[l{?]:-oo] Xmax(M) = 1. (48b)

A study of the functiony YL, has been performed. Calculations are tedious and are not pi

sented here for the sake of simplicig¥’L (M) is shown to be an increasing then decreasin
function in [Q 1]. Hence, its smallest value is eithgls (M = 0) or xy5 (M = 1). Since,
XmL joins the fully upwind condition ak = 1, its value is greater than 1. Hence,

Xopt = MiN(1, xY5.(0)). (48c)
XL (0) can easily be computed and gives

1
KL (0) = j (48d)

2
X¥|5;| 0) = ; . (48e)

Since,VTJrl > 1 for y > 1, both optimal CFL conditions of the theorem follow.
The proof is completed.

2.3. Steger and Warming’s Scheme

The Steger—Warming (SW) scheme [17] satisfies the assumptions (16), (17), and
too. Its F* functions are fully upwind in the supersonic regions. However, in the subsor
area, its expressions are slightly more intricate since they differ according to the sign of
local Mach number. When the Mach number is positive, veEtd/() is expressed as

@2y -DHM +1
Fru) = %‘ al(2y — HM? + (M + 1) . (49a)

3 _
a2y — DM3+ 52 4 k(M 1)
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When negativel* (/) vector is expressed as

1
FHad) = g—a(M +ul am+1 |. (49b)
Y Ky + M]

F~ (U) expressions can easily be calculated thanks to the consistency corfiti@n: +
F-U)=FU).

THEOREM 3. The Steger and Warming scheme is positively conservégivaich that
1 <y < 3. The optimal CFL number is

Xopt = min| inf xSM). 1] = 1. (50)

whereySW (M) is defined by Eq55).

max
Remarks.

o x>Wisdefined by Eq. (55) in the subsonic range. In the supersonic range, the sch

is fully upwind and Lemma 1 applies.

« Condition (50) is necessary and sufficiepf!’ is a complex function of the local
Mach number (see Eq. (55)). Yet, a sufficient condition can be obtained by using
minimum of the local CFL numbers (including the condition in the supersonic range
which is xopt = 1. Thereforethe Steger and Warming method is positively conservativ
under the usual CFL conditiog < 1.

Proof. (1) Positivity of vector F. For both expressions (49a) and (49b), the mass ter
is unconditionally positive. Concerning the equivalent internal energy, both terms are
veloped and lead to expressions proportional to

Gy —DM +3—y

(M +1) if M=>0 (51a)
y—1
377 M=o (51b)
y—1

which are both positive providing thatdy < 3.
In the subsonic rang®, U € &, F™(U) € ©; and condition (20a) is satisfied.

(2) Positivity of vectonV,. As it was done for VL and VLH schemes, the positivity
of vector W, will lead to a condition on the time step which will guarantee the scherr
positivity. W can be expressed as

loc

Wo=U — XTF*(Z/{), (52a)
where
y-DHM +1
U =Fru) —Fan="2| aMly-DM+2] |, (52b)

2[5 4 M2+ 1]
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W, can then be rewritten as

1

loc 1 4+ (y — HM _
W0=p<l— X 1(”M)) aM@ - ¢) , (52¢)
14 + aZ[KE—Cl_M+yM2

14

where

loc

_ X
Cy@+M) — [+ (y — DM]

Mass positivity requires

¢

|0(;< )/(l—l—M)
1+ —DHM’

Under this condition; is positive. The internal energy term can be developed and leads
a general condition similar to Eq. (29a) where

(53)

a(M) = M2 (54a)
bvy = 2~ M (54b)
y
My = —— 2 (54c)
oy =1

The maximum value of is computed from Eq. (29b). The positivity condition is then giver
by

loc SW _ Y(M + 1)¢max(M)

_ 55
< Xmax 1+[1+ (y — DM]Lmax(M) )

X

in which ymax can easily be computed and is plotted in Subsection 2.4.

(3) Computation ofxept. The framework is here the same as it is for VL and VLH
schemes. A study of the functiorss., has been performed. The optimal CFL number i
shown to be

Xopt = MiN(1, x54(0)). (56)

max

XnW(0) can easily be computed and gives 1. Hence, the CFL condition of the theor
follows.
The proof is completed.

2.4. Review of Positivity Conditions

Results and positivity conditions are summarized in Tables | and Il. Local necessary
sufficient conditions are given. It should be pointed out that, by itself, the positivity of vect
F* is only a necessary condition and does not ensure the scheme positivity. The positi
of vector, leads to a maximum time step which has then to be put into a CFL-like for
x'°¢ < Xopt- This is the case for VL, VLH, and SW schemes sifgg = infy (xmax) is not
zero.

It can be easily verified that the internal energy positivity conditions (Table II) are mo
stringent than the mass positivity conditions (Table ). Therefore, it is the internal enel
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TABLE |
Mass Positivity Conditions

VL and VLH sSwW
F+ Supersonic Unconditionally positive
Subsonic Unconditionally positive
M|+1
Wo Supersonic x'°¢ < l |l‘vl—i|_
2(0M|+1 M|+1
Subsonic x'°¢ < 2(Mi+D loc _vMi+D
1+ M2 1+ (y —DIM|

positivity condition which actually rules the scheme positivity. Moreover, it means that ze
values cannot be reached simultaneously by density and internal energy. Since expres
of vt xvtH, and x> are intricate, they are not detailed but these coefficients can |
easily computed as a function of the local Mach number following Egs. (47), (55), a
associated notations.

The smallest values of these conditions have been computed and lead to the optimal
conditiony,p: Which ensures that the scheme is positively conservative in all configuratiol
These constantg,,: are summarized in Table 11l and lead to an optimal CFL number c
one for usual gases where<ly < 2.

Since necessary and sufficient conditions have been derived, it can be interesting to
the local CFL conditions. For usual valuesyoin the range [12], the greatest allowable
time steps are obtained in decreasing order with the VL, VLH, and SW schemes.

Xxmax functions are plotted in Fig. 1 in the casejot=1.4. It shows that aM =1 the
three conditions join the condition derived in the fully upwind case. Moreover, both V
and VLH conditions are differentiable & =1. The SW scheme yields the most severe
condition while the VL scheme allows a greater local CFL condition in the subsonic ran

All three curves merge in the supersonic range where the CFL condition implieg tha
should decrease to 1 for high Mach numbers (Fig. 1). As a consequence, a CFL nun
of onea fortiori ensures positivity of the three schemes. Yet, higher CFL numbers ¢
be used with VL and VLH schemes if the flow is expected not to exceed a given Ma
number. For example, according to Fig. 1, a CFL number 4% {fory = 1.4) can be used
in subsonic flows although it would not maintain positivity with the SW scheme. Note th
this condition only ensures the scheme positivity, but not its stability. Using too high CI
numbers might produce oscillations even though the updated solution would still be
admissible state.

TABLE Il
Internal Energy Positivity Conditions

VL or VLH SW
. y—1
F+ Supersonic M>,/—
2y
Subsonic y>1 1<y <3
M| +1
Wo Supersonic x'°¢ IM] +

LML
M|+ /52

Subsonic x'°¢ < yLIVLH x'°¢ < )(r?;fy
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TABLE Il
Optimal CFL Number xopt

VL VLH SW

1 min(1, f) 1

3. ACCURACY VERSUS POSITIVITY

Most FVS schemes have proved to be robust in many flow configurations. Some of tr
have been proved to be positively conservative [12, 20]. Others have been analyzed in
paper. But none of them are able to exactly resolve contact discontinuities since it rem
a non-vanishing dissipation which smears out an initial discontinuity of densities.

Van Leer [19] pointed out that preventing numerical diffusion of contact discontinuitie
may lead to a marginally stable or unstable behavior for slow flows. Nevertheless, he c
cluded that the question would need more work.

In the present study, the question of linear stability is not tackled. But the strength
Theorem 1, since both conditions are necessary, leads to the following theorem.

THEOREM4. If a FVS scheme exactly preserves stationary contact discontinuhies
it cannot be positively conservative.

Remarks.

e This theorem explains why no FVS schemes have been built so far to simultaneot
yield their famous robustness and the vanishing numerical dissipation on contact wave

[ . P R
I
\ [
——
] an Leer -
e e an Leer/Hanel r
osd i i T Steger-Werming F
T — Fully Upwind N
0.6 —F
0.4

0.2 -

0.0F— . , . . , . — ;
0.0 0.2 04 06 0.8 1.0 12 14 16 18 20

M

FIG. 1. Maximum CFL numbel'* to ensure internal energy positivity; & 1.4).
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e FVS schemes are attractive because they are generally easy to implement, ea
make implicit, and lead to a low computational cost. However, the consequence of 1
theorem is that a scheme must include a hybrid technique with FDS schemes in ordk
satisfy both properties of robustness and accuracy.

Proof. Consider a FVS scheme given by its flux functidd$ and assume it exactly
preserves stationary contact discontinuities. Then, the interface flux betiveef(p, , 0,
V—El) andi/r = T(pR, O, V—El) must satisfy

0
FrU) + F~URr) = ( p) . (57)
0

Sincep, andpr are independent variables;" (24 ) must be a function of onlp. Hence,
foralltd = T(p, 0, V—El),

f1(p)
Fran =| fa(p) |- (58a)
f3(p)

Moreover, considering the symmetry property (17) and us?ng U, one has-— () =
—F+@WU). Then,

—f1(p)
Fruh = +fa(p) |- (58b)
—f3(p)
Substituting expressions (58a) and (58b) in Eq. (57), one obfa{ps = p/2. Moreover,
f1(p) must be positive or null to satisfy the condition (20a) of positivity.
e If f1(p) = 0, condition (20a) is not satisfied sinég(p) is not null.
o If fi(p) > 0,thenWp =U — ?F*(U) mass term may be expressed as

loc

f
p— % 2f(p) =p—ﬁ(2x'°°1(m>- (59)

NAZ

Hence, for all functionsf,(p) and for allx'°° > 0, one can find andp such that expres-
sion (59) is negative.

a

Hence, if a FVS scheme has been designed to exactly preserve contact discontinu
then it cannot satisfy both necessary conditions of Theorem 1.
The proof is completed.

4. CONCLUDING REMARKS

A general method to prove the positivity of FVS schemes has been detailed. It lead
two necessary and sufficient conditions on the flux vedtsts

It has been applied to standard FVS schemes, namely the Van Leer scheme, one
variants, and Steger and Warming schemes Although these schemes have been kno
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be robust, they are now proved to be positively conservative under a CFL condition o
for usual values of the specific heat ratidn the range [12]. In particular, this shows that
all these FVS schemes can be confidently applied to gas dynamics problems including
gas effects for whicly may range between 1.4 and 1.

Moreover, these conditions have been proved to be incompatible with the particular fc
of FVS schemes which would be able to exactly preserve stationary contact discontinui
Hence, arobust FVS scheme cannot exactly compute contact discontinuities. In other wc
an accurate and robust scheme must not be fully FVS. This drastically limits the capabili
of the class of FVS schemes.

APPENDIX A

LEMMA 2. The set of admissible states, and its closur@u are convex cones.e.,

YUy, Uy € Quy, Yag, ar > 0, a1l + alhs € Qy (60a)
YU, Us € §u, Vaq, ap > 0, oy + alhy € f_ZM. (60b)

Proof. One can define an order relation denoted-byhich corresponds te- for €,
and> for Q. Then,;, and€2;, are defined by

{U = T(Ul, Uy, U3) | U; > 0,usz > 0and 21Uz — Ug > 0} (61)

Let 2 be either®, or Q. The proof is completed in two steps

e Foralli{ e Q,Va € RT, one obtains directly

au; = 0 (62a)
als = 0 (62b)
2(auiaus) — (aUp)? = a®(2uzuz — uj) > 0. (62c)

Then,ald € Q. Hence is a cone.
e Forallid,V e Q, their components satisfy

up = 0, uz = 0, 2uuz — Uz = 0 (63a)
v1 > 0, vg = 0, 2v1v3 — v3 > 0. (63b)

Obviously,
Uy +vg >0, us + vz > 0. (64)

One has to prove the positivity of + ) internal energy. Ifi; (resp.v1) equals zero (only
when belonging t&2;,), thenu, (resp.v,) equals zero and

2(uy + vy (uz + v3) — (Up + U2)2 = (2U1U3 — U%) + 2viuz > 0. (65)
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Otherwise (; andv; # 0), one can develop

2(ug + v1) (U3 + v3) — (Uz + v2)?
= (2U1U3 — U%) + (21)11)3 - U%) + 2(Uiv3 + viUz — Uov2)

> 2(Uzvz + v1Uz — Upv2) (66a)
and

2(Uyv3 + v1U3 — Ugv2)
. U%(2v103) + U%(ZU]_UQ,) — 2U1v1U2v,
Uvy

. U%v% + vfu% — 2U1v1U207
Uivg

(Ugvz — v1Up)?
> —_—

Ujivy
) (66b)
Hencell +V € Q.
LEMMA 3.
YU, € Quy, YUy € §z,{, Vaq > 0, Yoy > 0, o Uy + aslhy € Q. (67)

Proof. The proof is similar to that of Lemma & positivity yields strict inequalities
which prove strict positivity of density and internal energyat- Us.

APPENDIX B. NOMENCLATURE

p  density x'°¢ local CFL number

p  pressure a sound speed

M  Mach number e internal energy

H total enthalpy Ky dimensionless coefficiett /a2
E total energy Ke dimensionless coefficiert /a2
U  state vector U updated state vector

Q@ space of physical states y ratio of specific heats

F  physical flux vector F numerical flux vector
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